【学术简介】 教育经历: (1)2002/03-2005/05,大连理工大学,机械设计及理论,博士 (2)1999/09-2001/12,江西理工大学,机械设计及理论,硕士 (3)1994/09-1998/06,江西理工大学,冶金机械,学士 工作经历: (1)2011/07-2012/07,University of Alberta,Reliability Research Lab,Visiting Professor (2)2009/10-现在,江西理工大学,机电工程学院,教授 (3)2006/07-2009/07,电子科技大学,仪器科学与技术,博士后 (4)2008/02-2008/07,清华大学,精密仪器与机械学系,访问学者 (5)2005/05-2009/09,江西理工大学,机电工程学院,副教授 学术兼职: (1)中国系统工程学会可靠性分会常务理事 (2)中国运筹学学会可靠性分会常务理事 (3)中国现场统计学会可靠性分会常务理事 (4)中国机械工程学会可靠性工程分会理事 (5)中国安全科学学报第一届青年编委 荣誉: (1)江西省新世纪百千万人才 (2)江西省青年科学家培养对象 (3)江苏省“双创计划”科技副总类资助对象 (4)江西省科技特派团富民强县工程科技特派员 (5)江西省高校中青年骨干教师 (6)江西省优秀硕士学位论文指导教师 【主讲课程】 研究生:现代设计方法,科研方法论等 本科生:机械优化设计、机械可靠性设计、机械故障诊断方法等 【主要研究领域】 装备可靠性与健康管理(PHM) 【主要研究方向】 (1)智能故障诊断 (2)装备剩余寿命预测 (3)系统可靠性分析 【代表性科研项目】 (1)国家自然科学基金“多状态退化系统状态自动离散及其剩余寿命预测方法研究”(主持)(No:61963018); (2)国家自然科学基金“多状态系统性能退化与状态迁移映射机制及其可靠性测度研究”(主持)(No:61463021); (3)国家自然科学基金“多状态系统模糊状态分配及其可靠性概率风险评价方法研究”(主持)(No:61164009); (4)江西省自然科学基金重点项目“变工况下齿轮箱局部故障最优特征提取及智能可视化诊断方法研究”(主持)(No:20212ACB202004); (5)江西省自然科学基金“状态监测下的多状态系统多参数退化过程建模及其剩余寿命预测”(主持)(No:20181BAB202020); (6)江西省青年科学家培养对象计划项目“复杂机械系统多失效模式的相关机制及其动态演化规律”(主持)(No:20144BCB23037); (7)江西省科技特派团富民强县工程科技特派员项目“养殖场设备自动化改造及ERP建设”(主持)(No:3206100107); (8)企业委托项目“用于智能鞋服的跨源点云配准关键技术开发”(主持)(No:2024360702040579); (9)企业委托项目“阴极不锈钢板面在线检测关键技术开发”(主持)(No:2024360702036614); (10)企业委托项目“高压辊磨机关键部件智能监测及其安全性能评估关键技术开发”(主持)(No:2024360702040272) 【代表性教学科研成果及奖励】 (1)江西省高等学校科技成果奖“面向全寿命周期的柴油机可靠性创新关键技术与实验研究”(1/5); (2)江西省科技进步二等奖“车用空气弹簧总成关键技术及产业化”(5/10); (3)江西省级教学成果二等奖“地方高校“四位一体 分层递进”的创新创业教育体系探索与实践”(1/5); (4)江西省级教学成果一等奖“地方高校创新创业教育模式构建与路径选择”(2/5); (5)中国冶金教育学会研究生学术论坛一等奖”数智化赋能关键矿冶装备智能运维和服役可靠性的技术研究”(博士); (6)中国冶金教育学会研究生学术论坛二等奖”基于特征信息保留的自适应多尺度点云滤波方法”(硕士) 【代表性论著】 (1)Ronghua Chen, Yingkui Gu*, Peng Huang, Junjie Chen, Guangqi Qiu*. A hierarchical fault diagnosis model for planetary gearbox with shift-invariant dictionary and OMPAN. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering, 2024, 10(3): 4065442 (2)You Keshun, Lian Zengwei, Gu Yingkui*. A performance-interpretable intelligent fusion of sound and vibration signals for bearing fault diagnosis via dynamic CAME. Nonlinear Dynamics, DOI: 10.1007/s11071-024-10157-1 (3)Peng Huang; Yingkui Gu*; Guangqi Qiu*. A novel feature dimensionality reduction method for gearbox fault diagnosis with HMSDE, DANCo-DDMA and KELM. Nonlinear Dynamics, 2024, 112(16): 14071-14091 (4)Peng Huang, He Li, Yingkui Gu*, Guangqi Qiu An extended moment-based trajectory accuracy reliability analysis method of robot manipulators with random and interval uncertainties. Reliability Engineering and System Safety, 2024, 246: 110082 (5)You Keshun, Wang Puzhou and Gu Yingkui*, Towards efficient and interpretative rolling bearing fault diagnosis via quadratic neural network with Bi-LSTM. IEEE Internet of Things Journal, 2024, 11(13):23002-23019 (6)Yingkui Gu, Ronghua Chen, Peng Huang, Junjie Chen, Guangqi Qiu. A lightweight bearing compound fault diagnosis method with gram angle field and ghost-resnet model. IEEE Transactions on Reliability, DOI: 10.1109/TR.2023.3332223 (7)You Keshun, Qiu Guangqi, and Gu Yingkui*. Optimizing prior distribution parameters for probabilistic prediction of remaining useful life using deep learning. Reliability Engineering and System Safety, 2024, 242: 109793 (8)Chen ronghua, Gu yingkui,* Qiu Guangqi, Huang peng*, et al. Dynamic analysis of planetary gear transmission based on Lagrange interpolation polynomials. Measurement Science and Technology. 2024, 35(11): 116103 (9)Peng Huang, Yuanjin Wang, Yingkui Gu*, Guangqi Qiu*. A bearing RUL prediction approach of vibration fault signal denoise modeling with Gate-CNN and Conv-Transformer encoder. Measurement Science and Technology, 2024, 35(6): 066104 (10)Yingkui Gu, Ronghua Chen, Guangqi Qiu, Peng Huang. A time-varying meshing stiffness model for involute gear based on load-sharing under mixed elastohydrodynamic lubrication. Quality and Reliability Engineering International, DOI: 10.1002/qre.3487 (11)You Keshun, Qiu Guangqi, Gu Yingkui*. A 3D attention-enhanced hybrid neural network for turbofan engine remaining life prediction using CNN and BiLSTM models. IEEE Sensors Journal, 2024, 24(14): 21893-21905 (12)Qiu Guangqi. Nie Yu, Peng, Yulong, Huang Peng, Chen Junjie, Gu Yingkui*. A variable-speed-condition fault diagnosis method for crankshaft bearing in the RV reducer with WSO-VMD and ResNet-SWIN. Quality and Reliability Engineering International, 2024, DOI 10.1002/qre.3538 (13)You Keshun, Qiu Guangqi, Gu Yingkui*. An efficient lightweight neural network using BiLSTM-SCN-CBAM with PCA-ICEEMDAN for diagnosing rolling bearing faults. Measurement Science and Technology, 2023, 34: 094001 (14)Ying-Kui Gu, Chao-Jun Fan, Ling-Qiang Liang, Jun Zhang. Reliability calculation method for mechanical system with dependent failure based on Copula function. Annals of Operations Research, 2022, 311:99-116 (15)Yingkui Gu, Qingpeng B, Guangqi Qiu. Practical health indicator construction methodology for bearing ensemble remaining useful prediction with ISOMAP-DE and ELM-WPHM. Measurement Science and Technology, 2022, 33: 025007 (16)Keshun You, Guangqi Qiu, Yingkui Gu*. Rolling bearing fault diagnosis using hybrid neural network with principal component analysis. Sensors, 2022, 22(22), 8906 (17)Yingkui Gu, Lei Zeng, Guangqi Qiu. Bearing fault diagnosis with varying conditions using angular domain resampling technology, SDP and DCNN. Measurement 2020, 156 (18)Guangqi Qiu, Yingkui Gu*, Junjie Chen. Selected prognostic indicator for bearings remaining useful life prediction with genetic algorithm and Weibull proportional hazards model. Measurement, 2020, 150 (19)Guangqi Qiu, Yingkui Gu*, Quan Cai. A deep convolutional neural networks model for intelligent fault diagnosis of a gearbox under different operational conditions. Measurement, 2019, 145: 94-107 (20)古莹奎, 邱光琦, 承姿辛. 多状态系统故障识别与使用寿命预测方法. 长沙: 中南大学出版社, 2019 【在读硕、博士人数】 博士2人,硕士17人 【已毕业硕、博士人数】 已毕业博士1人,硕士52人 |